Prediction of starry stonewort invasion

 risks in Minnesota and Wisconsin based on lake level habitat suitability
Where is starry stonewort going?

Ranjan Muthukrishnan mrunj@umn.edu July. 13, 2017

A comparison of eigenvalue decomposition and machine learning approaches for estimating distribution of a non-equilibrium species

Ranjan Muthukrishnan mrunj@umn.edu July. 13, 2017

Collaborators

- Dan Larkin
- Wes Glisson (research fellow)
- Mike Verhoeven (grad. student)
- Carli Wagner (undergrad.)
- Luis Escobar
- Nick Phelps
- Megan Weber

MINNESOTA AQUATIC INVASIVE SPECIES RESEARCH CENTER

University of Minnesota
Driven to Discover ${ }^{\text {² }}$

Starry stonewort working group

- MN DNR
- University of Wisconsin
- Paul Skawiski
- Central Michigan University

- New York Botanical garden
- Ken Karol and Robin Sleith
- University of Geneva

MINNESOTA AQUATIC INVASIVE
SPECIES RESEARCH CENTER
University of Minnesota
Driven to Discover"

Starry Stonewort

Starry stonewort

Nitellopsis obtusa

- Green alga

Three domains of living organisms (Gogarten, Taiz et al. 2015)

Starry stonewort

- Charophyte
- Closely related to stoneworts / muskgrasses native to Minnesota
- Ecologically important
- Water quality
- Habitat

Chara aspera

C. contraria

Nitella flexilis

Invasion history

- Relatively new invader
- Quickly gaining ground
- Increasing concern for AIS management
- Currently in 9 lakes in MN

Present distribution

Ecological niche modeling

- Species distribution models
- Habitat suitability models
- Bioclimatic models
- MaxEnt

Ecological niche modeling

Ecological niche modeling

Ecological niche modeling

Determining the niche

Information from the current distribution

Determining the niche

Information from the current distribution

Determining the niche

Information from the current distribution

Determining the niche

Information from the current distribution

Challenges for predicting risk

- Is the current range all of the suitable habitat?
- Have you measured all the important factors?
- Biotic vs Abiotic constraints

Environmental data

Environmental data

SCIENTIFIC REPRTS

OPEN Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North

America

Luis E. Escobar ${ }^{1,2}$, Huijie Oiao ${ }^{3}$, Nicholas B Nitellopsis obtusa (starry stonewort) is a dioeci emerged as an aquatic invasive species in Nort
of its native range, but has spread rapilly in n of its native range, but has spread rapidy in no
interfere with recreation and may displace nati of N. obtusa, making it difficult to foreceast futu
investigated environmental variables associate investigated environmental variables associatt
data and remotely sensed environmental varia data, and remotely sensed environmental variz
distribution. We found that N. obtusa is exploit
which may help explain its invasiveness. While which may help explain its invasiveness. While there appears to have been a shift in its realize,
portions of the United States are predicted toc portions of the United States are predicted toc
results can inform early detection and rapid res results can inform early detection and rapid res
estimates of the physiological tolerances of thi
estimates of the physiological tolerances of th Understanding how certain species experience gre
ecologically dominant than their performance as
biology and has important implications for asses biology and has important implications for assess
phenomenon are numerous: Common reed (Phy Eurasian genotypes have expanded throughout No
to five native populations in California, United S to five native populations in California, United S
invasive in Chile, Australia, and New Zealand ${ }^{\top}$. Ho
as an introduced species despite decclining in theil as an introduced speceies sespite declining in thei
in fortune, including escape from natural enemies
hybriza in fortune including escape from natural enemies
hybridization, novel allelopathic weapons, and unc
Regardless of the underlying mechanisms, the hybridization, novel antelopathic weapons, and unc
Regardless of the underlying mechanisms, the
to to occupy an ecological niche in thair introduce
ized in their native rangel ${ }^{1}$. It is true that many i

May not be best strategy for aquatic species

$$
\theta
$$

Accepted: 14 June 201

 Published: 01 July 2016ized in their native range ${ }^{11}$. It is true that many ${ }^{1}$
native ranges ${ }^{12}$, but for others an expanded realize onization of new types of habitatstis or growth un
niche in a species' native range and its potential r niche in a species' native range end dits potential r
even rare species can potentially become dominan even rare species can potentially become dominan
conditions ${ }^{11,1516}$.
3 ONO
${ }^{1}$ Minnesota Aquatic Invasive Species Research Cent Popelation Medicicine, Colllege of Veterinary Menti
Laboratory of Animal Ecology and Conservation Biol China. ${ }^{4}$ Department of Fisheries, Wild life, and Cor USA. Correspondence and requests for materials sh

Environmental data

Environmental data

Environmental data

出
University of Minnesota
Driven to Discover"

Remote Sensing and Geospatial Analysis Laboratory

Estimating the niche

Estimating the niche

Dissolved
oxygen
Dissolved
oxygen
saturation
pH
Alkalinity
Hardness
Conductance
N
Ammonia

Nitrate
P
Ortho-P
Temp
Secchi depth
Chlorophyll A
Color
Salinity
S
Lead

Estimating the niche

Nitrate
P
Ortho-P

Secchi depth Chlorophyll A Color
Salinity
S

Estimating the niche

P
pH
Secchi depth Chlorophyll A

Conductance
N

Estimating the niche

Estimating the niche

Env 1

Env 2

Env 3

Predicting suitable habitat

- Three approaches
- Random forests
- Boosted regression trees
- Ecological niche factor analysis (presence only)

Predicting suitable habitat

Low risk
High risk

Predicting suitable habitat

Low risk
High risk

Random forest

Boosted regression tree

ENFA

Expanding what we know

Boosted
Random forest Regression trees
ENFA

Expanding what we know

- Field sampling \longrightarrow Spatial interpolation

Expanding what we know

Expanding what we know

Connectivity

Comnare nediction methods More samples

Expanding what we know Keep looking !

Starry trek - How you can help

- Minnesota \& Wisconsin
- Statewide, coordinated shoreline searches

Saturday, Aug. 5 ${ }^{\text {th }}, 2017$

Photo: Dave Hansen

Final thoughts

- "All models are wrong; some are useful"
- Models give the impression of precision
- More levels of extrapolation or interpolation mean more sources of error
- Use models for planning and prioritization

Questions?

MINNESOTA AQUATIC INVASIVE SPECIES RESEARCH CENTER University of Minnesota Driven to Discover ${ }^{3 \prime}$

